Understanding Combinatorics in Algebra
Combinatorics is the study of counting, arrangements, and combinations. It is essential in probability, algebra, and computer science.
                                                                    Permutations                                                                
                                                                Permutations are arrangements of objects where order matters.
Formula: \( n! \) for \( n \) objects.
                                                                    Combinations                                                                
                                                                Combinations are selections of objects where order does not matter.
Formula: \( \binom{n}{r} = \frac{n!}{r!(n-r)!} \)
                                                                    The Binomial Theorem                                                                
                                                                The binomial theorem describes the expansion of \( (a + b)^n \).
                                                                    Practice Problems                                                                
                                                                - How many ways can you arrange 4 letters?
 - How many ways can you choose 3 out of 7 objects?
 - Expand \( (x + y)^3 \) using the binomial theorem.
 
📋
                                                        
                                                                                                                                                                                                        
                                                                                                                                        
                                                                                                                                                
                            ↑